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Abstract

The paper describes an approximate solution of the problem of intensive evaporation of a monatomic substance
at a plane surface and with condensation coe�cient equal to unity. The result is in the form of a set of algebraic

equations which may readily be solved and is in excellent agreement with recent numerical solutions. 7 2000
Elsevier Science Ltd. All rights reserved.

1. Introduction

During evaporation or condensation of a pure sub-
stance, there are, in general, di�erences between the

temperatures, pressures and speci®c Gibbs functions
on either side of the liquid±vapour interface. More
accurately, these di�erences occur across the so-called

Knudsen layer which divides the liquid±vapour inter-
face from the region in the vapour where the conti-
nuum equations hold. The study of this problem, by

the methods of molecular kinetic theory, dates back
more than 100 years. For monatomic molecules, a
notable early contribution was made by Schrage [1]

followed by related approaches such as those of Ytre-
hus [2] and Labuntsov and Kryukov [3]. These stu-
dies, which use assumptions for the form of the
velocity distribution function of the molecules in the

Knudsen layer, lead to algebraic results. Most
recently, numerical solutions of the Boltzmann±
Krook±Welander approximation of the Boltzmann

equation have been obtained by Sone and co-workers

[4]. Reviews have been given recently by Ytrehus [5]
and Rose [6].
The problem of interphase matter transfer is compli-

cated by uncertainty regarding the value of the so-

called condensation coe�cient, s, de®ned as the frac-
tion of those molecules incident on the liquid surface
which remain in the liquid phase. Over the years there

has been, and remains, controversy over this quantity.
The term ``re¯ection'', when viewed in detail as is done
in molecular dynamics approaches, is not clear Ð a

vapour molecule entering the interface region (which is
not in reality a simple plane surface) may return to the
vapour phase after one or more interactions with ``sur-
face molecules''. Experiments in the past have been

interpreted, on the basis of various theories, as indicat-
ing values of s ranging from 1 to 0.003. Measurements
for condensation of metals, e.g. [7], suggest that values

near unity are probably appropriate for use in molecu-
lar kinetic theory approaches but this remains an area
of debate. Results of approximate solutions with

s < 1, which require additional assumptions, show
strong e�ect of s [8].
The present paper reports a modi®cation of the

early approach of Schrage for s � 1 which gives al-
gebraic results virtually identical to the numerical sol-
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utions. This suggests that the assumed form of the
velocity distribution function for molecules adjacent

to the surface is very accurate or, at any rate, consist-
ent with that found from solutions of the Boltz-
mann±Krook±Welander equation, and could prove

useful in providing starting or limiting results in new
approaches using values of s less than unity and per-
haps for the case of polyatomic molecules and mix-

tures.

2. Approximate solutions

As in [1], for monatomic molecules and with s � 1,

conservation of mass, momentum and energy across
the Knudsen layer give�1
ÿ1
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where

c 2 � u 2 � v 2 � w 2 �4�

The results given on the RHS of Eqs. (1)±(3) are
readily obtained, as in [1], from the second integral in
each case using Eq. (7) below.

In [1], and all other approaches, the distribution
function for emitted molecules fs is taken as the Max-
wellian with the liquid (or solid) surface temperature

and corresponding saturation vapour density, i.e.

fs � ns

�
b3s
p3=2

�
eÿb

2
s �u 2�v 2�w 2 � �5�

where ns is the molecule density of the saturated
vapour at the surface temperature Ts and

bs � �2RTs �ÿ1=2 �6�

For the bulk continuum vapour, fb is taken as the
Maxwellian modi®ed to have a ``drift'' bulk velocity
Ub, i.e.

Nomenclature

B disposable parameter, see Eqs. (9b), (13), (18)
c molecule speed, see Eq. (4)
F de®ned in Eq. (16)

fs velocity distribution function, see Eq. (5)
fb velocity distribution function for bulk vapour,

see Eq. (7)

f0 velocity distribution function for vapour adja-
cent to surface

G de®ned in Eq. (17)

m net interphase mass ¯ux outward from surface
~m mass of molecule
nb molecule density of bulk vapour
ns molecule density for saturated vapour at tem-

perature Ts

Pb pressure of bulk vapour
Ps saturation pressure at temperature Ts

R speci®c ideal-gas constant
Tb temperature of bulk vapour

Ts temperature of surface
Ub velocity of bulk vapour, directed away from

surface

u velocity component measured outward from
surface

v velocity component parallel to surface

w velocity component parallel to surface
G1 de®ned in Eq. (22)
G2 de®ned in Eq. (23)

G3 de®ned in Eq. (24)
G4 de®ned in Eq. (25)
G5 de®ned in Eq. (26)
bb parameter de®ned in Eq. (8)

bs parameter de®ned in Eq. (6)
rb density of bulk vapour
s condensation coe�cient

fb dimensionless bulk vapour velocity away from
surface, see Eq. (12)
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fb � nb

�
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where

bb � �2RTb �ÿ1=2 �8�

For the distribution function of vapour molecules
adjacent to the liquid/solid surface f0 Schrage, in his

second theory, used

f0 � fs u > 0 �9a�

f0 � �1� Bu�fs u < 0 �9b�

where B is an unknown. The form of Eq. (9b) was

based on the work on di�usion in binary systems by
Furry [9]. It is noted that the bulk vapour plays no
part in the assumed distribution function for the gas at

the interface.
Eqs. (1)±(3), when integrated using Eqs. (7), (9a)

and (9b), lead to the simple results
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where fb is a dimensionless vapour velocity or mass
evaporation rate given by

fb � �m=rb ��2RTb �ÿ1=2� Ub�2RTb �ÿ1=2 �12�

As noted by Rose [6], Eqs. (10) and (11) di�er signi®-
cantly from the more recent solutions and give unsatis-
factory results when applied to the case of

condensation.
Ytrehus [2] and Labuntsov and Kryukov [3] inde-

pendently gave solutions in which Eq. (9b) was

replaced by

f0 � Bfb u < 0 �13�

The involvement of fb in the distribution function for
the vapour molecules adjacent to the surface somewhat

complicates the analysis, but when the integrals in the
conservation equations are evaluated, the resulting
equations may be solved explicitly for the temperature
and pressure ratios, giving
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Eqs. (14) and (15) are in much closer accord with the

numerical solutions.
Here, rather than Eq. (13), we use a modi®ed form

of Eq. (9b) for the distribution function for the inter-
face gas molecules moving towards the surface

f0 � �1� Bu�fb u < 0 �18�

that is, we replace fs in Schrage's expression by fb. This
complicates the analysis considerably but leads (see
Appendix A) to the algebraic results
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where G1, G2, G3, G4, G5 are all functions of fb only,
given by
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Eqs. (19)±(21), which result from the conservation
equations when the integrals are evaluated, involve

four unknowns �fb, Ps=Pb, Ts=Tb, B�2RTb�1=2� so
that any one of these can, in principle, be expressed

in terms of any other. For example, explicit (albeit
lengthy) algebraic expressions may be obtained for
the temperature and pressure ratios in terms of fb

by eliminating B�2RTb�1=2 from two pairs of the
equations and eliminating either temperature or
pressure ratio from the two resulting equations.

Figs. 1 and 2 compare the results found using this
procedure with the approximate solutions of Schrage
[1], Ytrehus [2] and Labuntsov and Kryukov [3] and

with the numerical solutions of Sone and Sugimoto
[4]. In Fig. 1, showing the dependence of fb on
pressure ratio, it may be seen that the Schrage [1]
values di�er somewhat from the numerical solutions,

while the later results are in close agreement. For
the dependence of fb on temperature ratio (Fig. 2),
the Schrage [1] values di�er quite widely from the

numerical results, while those of Ytyrehus [2] and
Labuntsov and Kryukov [3] di�er slightly. The
values obtained from Eqs. (19)±(21) are again very

close to the numerical solutions.

3. Concluding remarks

The approximate results reported here are virtually
co-incident with numerical solutions of the Boltz-

mann±Krook±Welander equation for evaporation of
a monatomic substance and with condensation coef-
®cient equal to unity. This suggests that Eq. (18)

gives a very close approximation to the velocity
distribution function for inward moving vapour mol-
ecules adjacent to the surface. Such an approxi-

mation could prove useful in studies of polyatomic
substances, mixtures or with condensation coe�cient
less than unity. It is also interesting to note that
di�erent, somewhat simpler, assumed distribution

functions [1,2,3] do not give widely di�erent results.
Previous investigators have noted that the theories

show that the bulk vapour is generally supersaturated

(metastable). It has also been pointed out that the ap-
proximate methods give (invalid) results for bulk gas
Mach numbers exceeding unity �fb > 0:913).
Condensation results may be obtained, as in [1],

by using negative values of fb in the approximate
solutions. On physical as well as theoretical grounds,

one would expect that for condensation, the bulk
vapour pressure and temperature might be speci®ed
independently for a given value of the surface tem-
perature. Modi®ed approximate approaches for con-

densation have been given by Labuntsov and
Kryukov [3] and Ytrehus and Alvestad [10]. These,
and numerical solutions of Aoki and Sone [11],

show that for condensation, fb depends on both
pressure and temperature ratios. The results of Aoki

Fig. 1. Comparison of solutions: fb vs. Ps=Pb:

Fig. 2. Comparison of solutions: fb vs. Ts=Tb:
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and Sone [11] are shown in Fig. 3. It may be seen
that the dependence on temperature ratio is weak

except at high values of ÿfb (approaching sonic
bulk vapour velocity) and when Tb=TsR1, when the
bulk vapour is supersaturated (metastable). The
results are otherwise close to those given by Eqs.

(19)±(21) where the corresponding values of Tb=Ts

(quoted in [6]) vary along the line from 1 at ÿfb �
0 to around 1.5 at ÿfb � 0:9:

Appendix A

A1. Conservation of mass

With Eqs. (9a) and (18), the LHS of Eq. (1) may be
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Substitution of the de®nitions of bs and bb (Eqs. (6)
and (8)) and using the ideal gas equation for rs and rb

yields Eq. (19).

A2. Conservation of momentum

With Eqs. (9a) and (18), the LHS of Eq. (2) may be
written as�1
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Fig. 3. Solutions of Aoki and Sone [11] for condensation.
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and substitution for bs, bb, rs and rb yields Eq. (20).

A3. Conservation of energy

With Eqs. (9a) and (18), the LHS of Eq. (3) may be
written as�1
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After integration and some manipulation, I2 may be
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Denoting the three integrals on the RHS of Eq. (A23)
by I3(1), I3(2), and I3(3), respectively, it is found that
after integration and some manipulation
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Eq. (3) then becomes
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and substitution for bs, bb, rs and rb yields Eq. (21).
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